Origin of the Moon

Julien Salmon*

SSERVI Seminar Speaker Series - 14 June 2016

A unique body

Mercury: no Venus: no satellite

satellite

Earth: 1 large satellite

Mars: 2 small satellites

- The Moon is the only large satellite of the terrestrial planets
 - Its mass is $\sim 1\%$ of the mass of the Earth
 - Phobos & Deimos are ~10⁻⁸ of the mass of Mars
- The Moon's density is 3.3g/cm³, indicating a small iron core
- The Moon currently orbits at $\sim 60R_F$. It was initially much closer and moved away due to tidal interaction with the Earth

Theories of Moon origin: Fission

Idea: Earth rotates so fast that material is ejected

- Problems:
 - How do you create such a state?
 - Earth-Moon angular momentum too low

Theories of Moon origin: Capture

Idea: Moon is a wandering object that passed close

to the Earth and was captured

Problems:

- Encounter velocity is high, need to dissipate kinetic energy
- Not achievable by tidal dissipation
- Gas drag: need low encounter velocity and dissipation of gas to avoid inward drift of the Moon

Theories of Moon origin: Co-accretion

 Idea: planetesimals collide inside Earth's Hill sphere, debris form a disk from which Moon accreted

- Problem:
 - How do you explain low-iron content of Moon?

Insights from planet formation

- Gravity causes dust to collect into larger planetesimals (asteroid- or comet-like bodies).
- Planetesimals collide and form larger bodies. Over time, they grow into Moon/Mars-sized protoplanets.

Giant Impact theory

Impact of a ~Mars-size object on proto-Earth ejects material onto orbit from which the Moon accreted

CONSTRAINTS:

- 1) Current angular momentum of Earth-Moon system
 - AM roughly conserved over 4.5 Gyr (< 10% loss due to solar tides)
 - Moon slowed down Earth by tides as it moved away
 - Implies initial Earth day ~5 hrs when Moon formed close to Earth
- 2) Need to put enough mass in orbit to produce a Moon
- 3) Low lunar density \rightarrow lunar iron fraction < 0.1

Mechanism of orbital injection?

Upon impact, debris receive a positive acceleration

Follows the negative acceleration from Earth's gravity

Total energy of the debris:

- > 0 ⇒ escapes on hyberbolic orbit
- < 0 ⇒ traverses a close elliptical orbit that eventually reimpacts Earth

Mechanism of orbital injection?

BUT...

Effects such as pressure gradients increase energy and angular momentum of the material \Rightarrow lift periapse above surface

Modeling giant impacts: Approach

Modeling giant impacts: Approach

- Computer models
- Planets described by thousands to millions of particles
- Good for treating physical deformation, spatial dispersion of material, & thermodynamic response (heating, pressure, melting/vaporization)

Animation by Robin Canup

Iron core vs. silicate mantle

General trends in impact outcome

• Impact parameter b= $sin(\alpha)$

Oblique b> 0.7 impacts
 yield orbiting material

From a disk to a Moon

- How do particles in the disk end up forming the Moon?
- Computer simulations of the protolunar disk
- Protolunar disk represented by a collection of 10³ 10⁴ particles

- Only gravitational interactions
- No thermodynamics, vapor, fragmentation

Sample Lunar Accretion Simulation:

- *N* = 10,000 particles
- $t = 1000T_K$ is about 10 months

- Initial disk mass = $4M_{Lungr}$
- Final Moon mass: 1.2M_{Lunar}

Formation of a ~lunar-mass object in less than a year

Summary of lunar forming impact models

- 1. "Successful" cases (Fe < 10%, $M_S \ge M_L$, $L_F \sim L_{EM}$):
 - Impactor ~10 to 20% of Earth's mass
 - "Oblique" impact, with angle ~35 to 50 degrees

2. Orbiting mass derived from impactor (> 60%)

But Earth & Moon have nearly identical composition of multiple chemical elements

- → Impactor had same composition as target?
- \rightarrow If not, need another mechanism

The Earth-Moon System circa 4,5 Ga

Protolunar disk is a very hot mixture of vapor and magma

Equilibration

- Material exchange between Earth and disk's atmospheres
- Compositional equilibration in ~100-1000 years (Pahlevan & Stevenson 2007)
- N-body models predict accretion timescale < 1 year...

Modeling the protolunar disk

- Roche limit: distance beyond which bounding forces between 2 objects overcome disruptive tides from the planet
 - ⇒ Objects of a given material can only merge if they are far enough from the planet
- Within Roche limit: gravitational instabilities form clumps that are then destroyed by tides = high collision rate
 - ⇒ particle disk would rapidly vaporize
 ≠ condensed particles
 - ⇒ Disk inside Roche limit should be represented by a fluid
 - Outside Roche limit: disk rapidly fragments
 - ⇒ Particle model is more appropriate

Hybrid disk model

within Roche limit: uniform fluid disk

beyond Roche limit: individual particles

Viscous spreading

- Physical & thermodynamical processes in the disk transport angular momentum from inner to outer regions
- The rate of transport can be modeled by a viscosity
- Conservation of the angular momentum of the disk causes it to "spread" outward
- This process can bring material beyond the Roche limit, where new moonlets can form

Resonances

The orbital period increases with distance

 For a given satellite position, there are positions inside its orbit where a particle would do exactly N

orbits while the satellite

does P orbits

 \Rightarrow Resonances

- For a disk and a satellite
 - ⇒Viscous spreading transfers ang. mom. from disk to satellite
 - ⇒The disk contracts & the satellite moves away

A typical simulation

- Mass inner disk: 2 M_L
- Mass outer disk: $0.5 M_L$
- Outer edge: 6 R_{\oplus}

A typical simulation

- Phase 1: outer bodies accrete and confine inner disk inside Roche limit
- Phase 2: inner disk slowly viscously spreads back out
- Phase 3: new bodies accrete at Roche limit and continue growth of the moon + serve as relay with inner disk causing moon orbit to expand

- All material in the outer disk is accreted in < 1 year
 - ⇒ same as N-body simulations
- Inner disk confined inside Roche limit by outer bodies
- Low radiation-limited viscosity
 ⇒ disk spreads back to Roche limit in
 O(10) years
- Accretion lasts for O(10²) years
- Moonlets accreted at Roche limit serve as angular momentum relay that drive the Moon > 6 R_⊕

A long 3-step accretion

Resulting Moon structure?

Implications

- Accretion timescales ~ 200 years
 - ⇒ compatible with estimated equilibration timescales
- 3-steps accretion:
 - Moon "core" accretes fast in outer disk, no equilibration
 - Potentially equilibrated "Earth-like" material accreted last
- Earth-like material preserved on top of Moon if not fully mixed? → e.g. cold interior suggested by GRAIL results (Andrews-Hanna et al. 2012)

Summary

A late Giant Impact on the Earth can form an iron-poor disk from which the Moon accreted

- Compositional similarities between the Earth and Moon can be explained if
 - Impactor identical to Earth
 - Impactor different, but disk composition evolve by mixing with the Earth's atmosphere
- The Moon forms over \sim 100 years and at \sim 6R_F

